Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Chemosphere ; 354: 141654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462188

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.


Assuntos
Ácidos Alcanossulfônicos , Polímeros de Fluorcarboneto , Fluorocarbonos , Propionatos , Masculino , Feminino , Camundongos , Animais , Lipidômica , Camundongos Endogâmicos C57BL , Fluorocarbonos/análise , Fígado/metabolismo , Ácidos Alcanossulfônicos/metabolismo
2.
Neurotoxicology ; 99: 264-273, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914043

RESUMO

Although specific environmental chemical exposures, including flame retardants, are known risk factors for neurodevelopmental disorders (NDDs), direct experimental evidence linking specific chemicals to NDDs is limited. Studies focusing on the mechanisms by which the social processing systems are vulnerable to chemical exposure are underrepresented in the literature, even though social impairments are defining characteristics of many NDDs. We have repeatedly demonstrated that exposure to Firemaster 550 (FM 550), a prevalent flame retardant mixture used in foam-based furniture and infant products, can adversely impact a variety of behavioral endpoints. Our recent work in prairie voles (Microtus ochrogaster), a prosocial animal model, demonstrated that perinatal exposure to FM 550 sex specifically impacts socioemotional behavior. Here, we utilized a factor analysis approach on a battery of behavioral data from our prior study to extract underlying factors that potentially explain patterns within the FM 550 behavior data. This approach identified which aspects of the behavioral battery are most robust and informative, an outcome critical for future study designs. Pearson's correlation identified behavioral endpoints associated with distance and stranger interactions that were highly correlated across 5 behavioral tests. Using these behavioral endpoints, exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) extracted 2 factors that could explain the data: Activity (distance traveled endpoints) and Sociability (time spent with a novel conspecific). Exposure to FM 550 significantly decreased Activity and decreased Sociability. This factor analysis approach to behavioral data offers the advantages of modeling numerous measured variables and simplifying the data set by presenting the data in terms of common, overarching factors in terms of behavioral function.


Assuntos
Retardadores de Chama , Organofosfatos , Animais , Gravidez , Feminino , Humanos , Comportamento Animal , Exposição Ambiental/análise , Comportamento Social , Retardadores de Chama/farmacologia
3.
Anal Bioanal Chem ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875675

RESUMO

The goal of lipidomic studies is to provide a broad characterization of cellular lipids present and changing in a sample of interest. Recent lipidomic research has significantly contributed to revealing the multifaceted roles that lipids play in fundamental cellular processes, including signaling, energy storage, and structural support. Furthermore, these findings have shed light on how lipids dynamically respond to various perturbations. Continued advancement in analytical techniques has also led to improved abilities to detect and identify novel lipid species, resulting in increasingly large datasets. Statistical analysis of these datasets can be challenging not only because of their vast size, but also because of the highly correlated data structure that exists due to many lipids belonging to the same metabolic or regulatory pathways. Interpretation of these lipidomic datasets is also hindered by a lack of current biological knowledge for the individual lipids. These limitations can therefore make lipidomic data analysis a daunting task. To address these difficulties and shed light on opportunities and also weaknesses in current tools, we have assembled this review. Here, we illustrate common statistical approaches for finding patterns in lipidomic datasets, including univariate hypothesis testing, unsupervised clustering, supervised classification modeling, and deep learning approaches. We then describe various bioinformatic tools often used to biologically contextualize results of interest. Overall, this review provides a framework for guiding lipidomic data analysis to promote a greater assessment of lipidomic results, while understanding potential advantages and weaknesses along the way.

4.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745446

RESUMO

Zebrafish have become an essential tool in screening for developmental neurotoxic chemicals and their molecular targets. The success of zebrafish as a screening model is partially due to their physical characteristics including their relatively simple nervous system, rapid development, experimental tractability, and genetic diversity combined with technical advantages that allow for the generation of large amounts of high-dimensional behavioral data. These data are complex and require advanced machine learning and statistical techniques to comprehensively analyze and capture spatiotemporal responses. To accomplish this goal, we have trained semi-supervised deep autoencoders using behavior data from unexposed larval zebrafish to extract quintessential "normal" behavior. Following training, our network was evaluated using data from larvae shown to have significant changes in behavior (using a traditional statistical framework) following exposure to toxicants that include nanomaterials, aromatics, per- and polyfluoroalkyl substances (PFAS), and other environmental contaminants. Further, our model identified new chemicals (Perfluoro-n-octadecanoic acid, 8-Chloroperfluorooctylphosphonic acid, and Nonafluoropentanamide) as capable of inducing abnormal behavior at multiple chemical-concentrations pairs not captured using distance moved alone. Leveraging this deep learning model will allow for better characterization of the different exposure-induced behavioral phenotypes, facilitate improved genetic and neurobehavioral analysis in mechanistic determination studies and provide a robust framework for analyzing complex behaviors found in higher-order model systems.

5.
Anal Chem ; 95(34): 12913-12922, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37579019

RESUMO

Mass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics due to its ability to identify and visualize molecular characteristics unique to different phenotypes within heterogeneous samples. Data from MSI experiments are often assessed and visualized using various supervised and unsupervised statistical approaches. However, these approaches tend to fall short in identifying and concisely visualizing subtle, phenotype-relevant molecular changes. To address these shortcomings, we developed aggregated molecular phenotype (AMP) scores. AMP scores are generated using an ensemble machine learning approach to first select features differentiating phenotypes, weight the features using logistic regression, and combine the weights and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 phenotypes. AMP scores, therefore, allow the evaluation of multiple features simultaneously and showcase the degree to which these features correlate with various phenotypes. Due to the ensembled approach, AMP scores are able to overcome limitations associated with individual models, leading to high diagnostic accuracy and interpretability. Here, AMP score performance was evaluated using metabolomic data collected from desorption electrospray ionization MSI. Initial comparisons of cancerous human tissues to their normal or benign counterparts illustrated that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.


Assuntos
Diagnóstico por Imagem , Neoplasias , Humanos , Diagnóstico por Imagem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Neoplasias/diagnóstico por imagem , Metabolômica , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Imagem Molecular/métodos
6.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333214

RESUMO

Mass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics due to its ability to identify and visualize molecular characteristics unique to different phenotypes within heterogeneous samples. Data from MSI experiments are often visualized using single ion images and further analyzed using machine learning and multivariate statistics to identify m/z features of interest and create predictive models for phenotypic classification. However, often only a single molecule or m/z feature is visualized per ion image, and mainly categorical classifications are provided from the predictive models. As an alternative approach, we developed an aggregated molecular phenotype (AMP) scoring system. AMP scores are generated using an ensemble machine learning approach to first select features differentiating phenotypes, weight the features using logistic regression, and combine the weights and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 phenotypes. AMP scores therefore allow the evaluation of multiple features simultaneously and showcase the degree to which these features correlate with various phenotypes, leading to high diagnostic accuracy and interpretability of predictive models. Here, AMP score performance was evaluated using metabolomic data collected from desorption electrospray ionization (DESI) MSI. Initial comparisons of cancerous human tissues to normal or benign counterparts illustrated that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.

7.
Cells ; 12(12)2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371044

RESUMO

Monoclonal antibody (mAb) therapy directed against CD20 is an important tool in the treatment of B cell disorders. However, variable patient response and acquired resistance remain important clinical challenges. To identify genetic factors that may influence sensitivity to treatment, the cytotoxic activity of three CD20 mAbs: rituximab; ofatumumab; and obinutuzumab, were screened in high-throughput assays using 680 ethnically diverse lymphoblastoid cell lines (LCLs) followed by a pharmacogenomic assessment. GWAS analysis identified several novel gene candidates. The most significant SNP, rs58600101, in the gene MKL1 displayed ethnic stratification, with the variant being significantly more prevalent in the African cohort and resulting in reduced transcript levels as measured by qPCR. Functional validation of MKL1 by shRNA-mediated knockdown of MKL1 resulted in a more resistant phenotype. Gene expression analysis identified the developmentally associated TGFB1I1 as the most significant gene associated with sensitivity. qPCR among a panel of sensitive and resistant LCLs revealed immunoglobulin class-switching as well as differences in the expression of B cell activation markers. Flow cytometry showed heterogeneity within some cell lines relative to surface Ig isotype with a shift to more IgG+ cells among the resistant lines. Pretreatment with prednisolone could partly reverse the resistant phenotype. Results suggest that the efficacy of anti-CD20 mAb therapy may be influenced by B cell developmental status as well as polymorphism in the MKL1 gene. A clinical benefit may be achieved by pretreatment with corticosteroids such as prednisolone followed by mAb therapy.


Assuntos
Antineoplásicos , Testes Farmacogenômicos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/genética , Antígenos CD20/genética , Prednisolona , Humanos
8.
J R Stat Soc Ser C Appl Stat ; 72(2): 254-270, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37197290

RESUMO

We aim to infer bioactivity of each chemical by assay endpoint combination, addressing sparsity of toxicology data. We propose a Bayesian hierarchical framework which borrows information across different chemicals and assay endpoints, facilitates out-of-sample prediction of activity for chemicals not yet assayed, quantifies uncertainty of predicted activity, and adjusts for multiplicity in hypothesis testing. Furthermore, this paper makes a novel attempt in toxicology to simultaneously model heteroscedastic errors and a nonparametric mean function, leading to a broader definition of activity whose need has been suggested by toxicologists. Real application identifies chemicals most likely active for neurodevelopmental disorders and obesity.

9.
Pharmaceuticals (Basel) ; 16(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242509

RESUMO

Temozolomide (TMZ) chemotherapy is an important tool in the treatment of glioma brain tumors. However, variable patient response and chemo-resistance remain exceptionally challenging. Our previous genome-wide association study (GWAS) identified a suggestively significant association of SNP rs4470517 in the RYK (receptor-like kinase) gene with TMZ drug response. Functional validation of RYK using lymphocytes and glioma cell lines resulted in gene expression analysis indicating differences in expression status between genotypes of the cell lines and TMZ dose response. We conducted univariate and multivariate Cox regression analyses using publicly available TCGA and GEO datasets to investigate the impact of RYK gene expression status on glioma patient overall (OS) and progression-free survival (PFS). Our results indicated that in IDH mutant gliomas, RYK expression and tumor grade were significant predictors of survival. In IDH wildtype glioblastomas (GBM), MGMT status was the only significant predictor. Despite this result, we revealed a potential benefit of RYK expression in IDH wildtype GBM patients. We found that a combination of RYK expression and MGMT status could serve as an additional biomarker for improved survival. Overall, our findings suggest that RYK expression may serve as an important prognostic or predictor of TMZ response and survival for glioma patients.

10.
Pharmaceuticals (Basel) ; 16(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242540

RESUMO

Oxaliplatin (OXAL) is a commonly used chemotherapy for treating colorectal cancer (CRC). A recent genome wide association study (GWAS) showed that a genetic variant (rs11006706) in the lncRNA gene MKX-AS1 and partnered sense gene MKX could impact the response of genetically varied cell lines to OXAL treatment. This study found that the expression levels of MKX-AS1 and MKX in lymphocytes (LCLs) and CRC cell lines differed between the rs11006706 genotypes, indicating that this gene pair could play a role in OXAL response. Further analysis of patient survival data from the Cancer Genome Atlas (TCGA) and other sources showed that patients with high MKX-AS1 expression status had significantly worse overall survival (HR = 3.2; 95%CI = (1.17-9); p = 0.024) compared to cases with low MKX-AS1 expression status. Alternatively, high MKX expression status had significantly better overall survival (HR = 0.22; 95%CI = (0.07-0.7); p = 0.01) compared to cases with low MKX expression status. These results suggest an association between MKX-AS1 and MKX expression status that could be useful as a prognostic marker of response to OXAL and potential patient outcomes in CRC.

11.
J Immunotoxicol ; 20(1): 2176953, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36788734

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are used in a multitude of processes and products, including nonstick coatings, food wrappers, and fire-fighting foams. These chemicals are environmentally-persistent, ubiquitous, and can be detected in the serum of 98% of Americans. Despite evidence that PFASs alter adaptive immunity, few studies have investigated their effects on innate immunity. The report here presents results of studies that investigated the impact of nine environmentally-relevant PFASs [e.g. perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid potassium salt (PFOS-K), perfluorononanoic acid (PFNA), perfluorohexanoic acid (PFHxA), perfluorohexane sulfonic acid (PFHxS), perfluorobutane sulfonic acid (PFBS), ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX), 7H-perfluoro-4-methyl-3,6-dioxa-octane sulfonic acid (Nafion byproduct 2), and perfluoromethoxyacetic acid sodium salt (PFMOAA-Na)] on one component of the innate immune response, the neutrophil respiratory burst. The respiratory burst is a key innate immune process by which microbicidal reactive oxygen species (ROS) are rapidly induced by neutrophils in response to pathogens; defects in the respiratory burst can increase susceptibility to infection. The study here utilized larval zebrafish, a human neutrophil-like cell line, and primary human neutrophils to ascertain whether PFAS exposure inhibits ROS production in the respiratory burst. It was observed that exposure to PFHxA and GenX suppresses the respiratory burst in zebrafish larvae and a human neutrophil-like cell line. GenX also suppressed the respiratory burst in primary human neutrophils. This report is the first to demonstrate that these PFASs suppress neutrophil function and support the utility of employing zebrafish larvae and a human cell line as screening tools to identify chemicals that may suppress human immune function.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Animais , Humanos , Peixe-Zebra , Neutrófilos , Espécies Reativas de Oxigênio , Explosão Respiratória , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade
12.
Toxics ; 10(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36548602

RESUMO

Individuals within genetically diverse populations display broad susceptibility differences upon chemical exposures. Understanding the role of gene-environment interactions (GxE) in differential susceptibility to an expanding exposome is key to protecting public health. However, a chemical's potential to elicit GxE is often not considered during risk assessment. Previously, we've leveraged high-throughput zebrafish (Danio rerio) morphology screening data to reveal patterns of potential GxE effects. Here, using a population genetics framework, we apportioned variation in larval behavior and gene expression in three different PFHxA environments via mixed-effect modeling to assess significance of GxE term. We estimated the intraclass correlation (ICC) between full siblings from different families using one-way random-effects model. We found a significant GxE effect upon PFHxA exposure in larval behavior, and the ICC of behavioral responses in the PFHxA exposed population at the lower concentration was 43.7%, while that of the control population was 14.6%. Considering global gene expression data, a total of 3746 genes showed statistically significant GxE. By showing evidence that heritable genetics are directly affecting gene expression and behavioral susceptibility of individuals to PFHxA exposure, we demonstrate how standing genetic variation in a heterogeneous population such as ours can be leveraged to test for potential GxE.

13.
Environ Int ; 167: 107419, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863239

RESUMO

INTRODUCTION: Wildfires are a threat to public health world-wide that are growing in intensity and prevalence. The biological mechanisms that elicit wildfire-associated toxicity remain largely unknown. The potential involvement of cross-tissue communication via extracellular vesicles (EVs) is a new mechanism that has yet to be evaluated. METHODS: Female CD-1 mice were exposed to smoke condensate samples collected from the following biomass burn scenarios: flaming peat; smoldering peat; flaming red oak; and smoldering red oak, representing lab-based simulations of wildfire scenarios. Lung tissue, bronchoalveolar lavage fluid (BALF) samples, peripheral blood, and heart tissues were collected 4 and 24 h post-exposure. Exosome-enriched EVs were isolated from plasma, physically characterized, and profiled for microRNA (miRNA) expression. Pathway-level responses in the lung and heart were evaluated through RNA sequencing and pathway analyses. RESULTS: Markers of cardiopulmonary tissue injury and inflammation from BALF samples were significantly altered in response to exposures, with the greatest changes occurring from flaming biomass conditions. Plasma EV miRNAs relevant to cardiovascular disease showed exposure-induced expression alterations, including miR-150, miR-183, miR-223-3p, miR-30b, and miR-378a. Lung and heart mRNAs were identified with differential expression enriched for hypoxia and cell stress-related pathways. Flaming red oak exposure induced the greatest transcriptional response in the heart, a large portion of which were predicted as regulated by plasma EV miRNAs, including miRNAs known to regulate hypoxia-induced cardiovascular injury. Many of these miRNAs had published evidence supporting their transfer across tissues. A follow-up analysis of miR-30b showed that it was increased in expression in the heart of exposed mice in the absence of changes to its precursor molecular, pri-miR-30b, suggesting potential transfer from external sources (e.g., plasma). DISCUSSION: This study posits a potential mechanism through which wildfire exposures induce cardiopulmonary responses, highlighting the role of circulating plasma EVs in intercellular and systems-level communication between tissues.


Assuntos
Vesículas Extracelulares , MicroRNAs , Incêndios Florestais , Animais , Biomassa , Vesículas Extracelulares/metabolismo , Feminino , Hipóxia , Camundongos , Solo
14.
Front Toxicol ; 4: 893924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812168

RESUMO

Research in environmental health is becoming increasingly reliant upon data science and computational methods that can more efficiently extract information from complex datasets. Data science and computational methods can be leveraged to better identify relationships between exposures to stressors in the environment and human disease outcomes, representing critical information needed to protect and improve global public health. Still, there remains a critical gap surrounding the training of researchers on these in silico methods. We aimed to address this gap by developing the inTelligence And Machine lEarning (TAME) Toolkit, promoting trainee-driven data generation, management, and analysis methods to "TAME" data in environmental health studies. Training modules were developed to provide applications-driven examples of data organization and analysis methods that can be used to address environmental health questions. Target audiences for these modules include students, post-baccalaureate and post-doctorate trainees, and professionals that are interested in expanding their skillset to include recent advances in data analysis methods relevant to environmental health, toxicology, exposure science, epidemiology, and bioinformatics/cheminformatics. Modules were developed by study coauthors using annotated script and were organized into three chapters within a GitHub Bookdown site. The first chapter of modules focuses on introductory data science, which includes the following topics: setting up R/RStudio and coding in the R environment; data organization basics; finding and visualizing data trends; high-dimensional data visualizations; and Findability, Accessibility, Interoperability, and Reusability (FAIR) data management practices. The second chapter of modules incorporates chemical-biological analyses and predictive modeling, spanning the following methods: dose-response modeling; machine learning and predictive modeling; mixtures analyses; -omics analyses; toxicokinetic modeling; and read-across toxicity predictions. The last chapter of modules was organized to provide examples on environmental health database mining and integration, including chemical exposure, health outcome, and environmental justice indicators. Training modules and associated data are publicly available online (https://uncsrp.github.io/Data-Analysis-Training-Modules/). Together, this resource provides unique opportunities to obtain introductory-level training on current data analysis methods applicable to 21st century science and environmental health.

15.
Front Toxicol ; 4: 846221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573279

RESUMO

Understanding the mechanisms behind chemical susceptibility differences is key to protecting sensitive populations. However, elucidating gene-environment interactions (GxE) presents a daunting challenge. While mammalian models have proven useful, problems with scalability to an enormous chemical exposome and clinical translation faced by all models remain; therefore, alternatives are needed. Zebrafish (Danio rerio) have emerged as an excellent model for investigating GxE. This study used a combined bioinformatic and experimental approach to probe the mechanisms underlying chemical susceptibility differences in a genetically diverse zebrafish population. Starting from high-throughput screening (HTS) data, a genome-wide association study (GWAS) using embryonic fish exposed to 0.6 µM Abamectin revealed significantly different effects between individuals. A hypervariable region with two distinct alleles-one with G at the SNP locus (GG) and one with a T and the 16 bp deletion (TT)-associated with differential susceptibility was found. Sensitive fish had significantly lower sox7 expression. Due to their location and the observed expression differences, we hypothesized that these sequences differentially regulate sox7. A luciferase reporter gene assay was used to test if these sequences, alone, could lead to expression differences. The TT allele showed significantly lower expression than the GG allele in MCF-7 cells. To better understand the mechanism behind these expression differences, predicted transcription factor binding differences between individuals were compared in silico, and several putative binding differences were identified. EMSA was used to test for binding differences in whole embryo protein lysate to investigate these TF binding predictions. We confirmed that the GG sequence is bound to protein in zebrafish. Through a competition EMSA using an untagged oligo titration, we confirmed that the GG oligo had a higher binding affinity than the TT oligo, explaining the observed expression differences. This study identified differential susceptibility to chemical exposure in a genetically diverse population, then identified a plausible mechanism behind those differences from a genetic to molecular level. Thus, an HTS-compatible zebrafish model is valuable and adaptable in identifying GxE mechanisms behind susceptibility differences to chemical exposure.

16.
J Expo Sci Environ Epidemiol ; 32(6): 900-907, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35474345

RESUMO

BACKGROUND: Presenting a comprehensive picture of geographic data comprising multiple factors is an inherently integrative undertaking. Visualizing such data in an interactive form is essential for public sharing and geographic information systems (GIS) analysis. The Toxicological Prioritization Index (ToxPi) framework offers a visual analytic integrating data that is compatible with geographic data. ArcGIS is a predominant geospatial software available for presenting and communicating geographic data, yet to our knowledge there is no methodology for integrating ToxPi profiles into ArcGIS maps. OBJECTIVE: We introduce an actively developed suite of software, the ToxPi*GIS Toolkit, for creating, viewing, sharing, and analyzing interactive ToxPi profiles in ArcGIS to allow for new GIS analysis and an avenue for providing geospatial results to the public. METHODS: The ToxPi*GIS Toolkit is a collection of methods for creating interactive feature layers that contain ToxPi profiles. It currently includes an ArcGIS Toolbox (ToxPiToolbox.tbx) for drawing location-specific ToxPi profiles in a single feature layer, a collection of modular Python scripts that create predesigned layer files containing ToxPi feature layers from the command line, and a collection of Python routines for useful data manipulation and preprocessing. We present workflows documenting ToxPi feature layer creation, sharing, and embedding for both novice and advanced users looking for additional customizability. RESULTS: Map visualizations created with the ToxPi*GIS Toolkit can be made freely available on public URLs, allowing users without ArcGIS Pro access or expertise to view and interact with them. Novice users with ArcGIS Pro access can create de novo custom maps, and advanced users can exploit additional customization options. The ArcGIS Toolbox provides a simple means for generating ToxPi feature layers. We illustrate its usage with current COVID-19 data to compare drivers of pandemic vulnerability in counties across the United States. SIGNIFICANCE: The integration of ToxPi profiles with ArcGIS provides new avenues for geospatial analysis, visualization, and public sharing of multi-factor data. This allows for comparison of data across a region, which can support decisions that help address issues such as disease prevention, environmental health, natural disaster prevention, chemical risk, and many others. Development of new features, which will advance the interests of the scientific community in many fields, is ongoing for the ToxPi*GIS Toolkit, which can be accessed from www.toxpi.org .


Assuntos
COVID-19 , Sistemas de Informação Geográfica , Humanos
17.
Toxicol Sci ; 187(2): 325-344, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377459

RESUMO

The aryl hydrocarbon receptor (AHR) is required for vertebrate development and is also activated by exogenous chemicals, including polycyclic aromatic hydrocarbons (PAHs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AHR activation is well-understood, but roles of downstream molecular signaling events are largely unknown. From previous transcriptomics in 48 h postfertilization (hpf) zebrafish exposed to several PAHs and TCDD, we found wfikkn1 was highly coexpressed with cyp1a (marker for AHR activation). Thus, we hypothesized wfikkn1's role in AHR signaling, and showed that wfikkn1 expression was Ahr2 (zebrafish ortholog of human AHR)-dependent in developing zebrafish exposed to TCDD. To functionally characterize wfikkn1, we made a CRISPR-Cas9 mutant line with a 16-bp deletion in wfikkn1's exon, and exposed wildtype and mutants to dimethyl sulfoxide or TCDD. 48-hpf mRNA sequencing revealed over 700 genes that were differentially expressed (p < .05, log2FC > 1) between each pair of treatment combinations, suggesting an important role for wfikkn1 in altering both the 48-hpf transcriptome and TCDD-induced expression changes. Mass spectrometry-based proteomics of 48-hpf wildtype and mutants revealed 325 significant differentially expressed proteins. Functional enrichment demonstrated wfikkn1 was involved in skeletal muscle development and played a role in neurological pathways after TCDD exposure. Mutant zebrafish appeared morphologically normal but had significant behavior deficiencies at all life stages, and absence of Wfikkn1 did not significantly alter TCDD-induced behavior effects at all life stages. In conclusion, wfikkn1 did not appear to be significantly involved in TCDD's overt toxicity but is likely a necessary functional member of the AHR signaling cascade.


Assuntos
Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Animais , Embrião não Mamífero , Dibenzodioxinas Policloradas/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Proteoma/genética , Proteoma/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transcriptoma , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
J Hazard Mater ; 431: 128615, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35263707

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of widely used chemicals with limited human health effects data relative to the diversity of structures manufactured. To help fill this data gap, an extensive in vivo developmental toxicity screen was performed on 139 PFAS provided by the US EPA. Dechorionated embryonic zebrafish were exposed to 10 nominal water concentrations of PFAS (0.015-100 µM) from 6 to 120 h post-fertilization (hpf). The embryos were assayed for embryonic photomotor response (EPR), larval photomotor response (LPR), and 13 morphological endpoints. A total of 49 PFAS (35%) were bioactive in one or more assays (11 altered EPR, 25 altered LPR, and 31 altered morphology). Perfluorooctanesulfonamide (FOSA) was the only structure that was bioactive in all 3 assays, while Perfluorodecanoic acid (PFDA) was the most potent teratogen. Low PFAS volatility was associated with developmental toxicity (p < 0.01), but no association was detected between bioactivity and five other physicochemical parameters. The bioactive PFAS were enriched for 6 supergroup chemotypes. The results illustrate the power of a multi-dimensional in vivo platform to assess the developmental (neuro)toxicity of diverse PFAS and in the acceleration of PFAS safety research.


Assuntos
Fluorocarbonos , Peixe-Zebra , Animais , Fluorocarbonos/análise , Larva , Teratógenos
19.
BMC Public Health ; 22(1): 313, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168583

RESUMO

BACKGROUND: The use of systems science methodologies to understand complex environmental and human health relationships is increasing. Requirements for advanced datasets, models, and expertise limit current application of these approaches by many environmental and public health practitioners. METHODS: A conceptual system-of-systems model was applied for children in North Carolina counties that includes example indicators of children's physical environment (home age, Brownfield sites, Superfund sites), social environment (caregiver's income, education, insurance), and health (low birthweight, asthma, blood lead levels). The web-based Toxicological Prioritization Index (ToxPi) tool was used to normalize the data, rank the resulting vulnerability index, and visualize impacts from each indicator in a county. Hierarchical clustering was used to sort the 100 North Carolina counties into groups based on similar ToxPi model results. The ToxPi charts for each county were also superimposed over a map of percentage county population under age 5 to visualize spatial distribution of vulnerability clusters across the state. RESULTS: Data driven clustering for this systems model suggests 5 groups of counties. One group includes 6 counties with the highest vulnerability scores showing strong influences from all three categories of indicators (social environment, physical environment, and health). A second group contains 15 counties with high vulnerability scores driven by strong influences from home age in the physical environment and poverty in the social environment. A third group is driven by data on Superfund sites in the physical environment. CONCLUSIONS: This analysis demonstrated how systems science principles can be used to synthesize holistic insights for decision making using publicly available data and computational tools, focusing on a children's environmental health example. Where more traditional reductionist approaches can elucidate individual relationships between environmental variables and health, the study of collective, system-wide interactions can enable insights into the factors that contribute to regional vulnerabilities and interventions that better address complex real-world conditions.


Assuntos
Saúde Ambiental , Chumbo , Criança , Saúde da Criança , Pré-Escolar , Humanos , Saúde Pública , Análise de Sistemas
20.
Environ Sci Technol ; 56(6): 3441-3451, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35175744

RESUMO

As concerns over exposure to per- and polyfluoroalkyl substances (PFAS) are continually increasing, novel methods to monitor their presence and modifications are greatly needed, as some have known toxic and bioaccumulative characteristics while most have unknown effects. This task however is not simple, as the Environmental Protection Agency (EPA) CompTox PFAS list contains more than 9000 substances as of September 2020 with additional substances added continually. Nontargeted analyses are therefore crucial to investigating the presence of this immense list of possible PFAS. Here, we utilized archived and field-sampled pine needles as widely available passive samplers and a novel nontargeted, multidimensional analytical method coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to evaluate the temporal and spatial presence of numerous PFAS. Over 70 PFAS were detected in the pine needles from this study, including both traditionally monitored legacy perfluoroalkyl acids (PFAAs) and their emerging replacements such as chlorinated derivatives, ultrashort chain PFAAs, perfluoroalkyl ether acids including hexafluoropropylene oxide dimer acid (HFPO-DA, "GenX") and Nafion byproduct 2, and a cyclic perfluorooctanesulfonic acid (PFOS) analog. Results from this study provide critical insight related to PFAS transport, contamination, and reduction efforts over the past six decades.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/análise , Cromatografia Líquida , Fluorocarbonos/análise , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...